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SCIENTIFIC ABSTRACT

BACKGROUND AND AIMS

This report explores safety assurance challenges of robotic and autonomous systems (RAS) in
healthcare using the example of intravenous (1V) medication management systems within an intensive
care unit (ICU) setting. The report also investigates safety assurance strategies to address these

challenges. Findings are presented from a multi-disciplinary qualitative study that investigated

intravenous infusion practices in one ICU in an English National Health Service (NHS) hospital.

The focus of the study was the clinical system rather than the technology as such. The study,

therefore, explored safety assurance challenges at the intersection of engineering and human factors.

The project addressed the following study questions:

e Q1: What are perceptions of different stakeholder groups of safety assurance of autonomous

IV medication management systems in ICU?

e Q2: What are strengths and weaknesses of representative assurance methods for assuring

the safety of autonomous IV medication management systems?

METHODS

The study design utilised a multi-disciplinary qualitative research approach organised into two

research strands consisting of four research activities.

Thematic Analysis

Research Strand 1: Stakeholder perceptions of Al in healthcare

The aim of this research strand was to describe stakeholder
perceptions on safety assurance of Al and autonomous systems for
IV medication management in ICU settings. The research strand
consisted of one research activity.

26 semi-structured interviews conducted with a purposive sample
of stakeholders consisting of patients, hospital staff, technology
developers and regulators.

Research Strand 2: Safety assurance methods and strategies

The aim of this research strand was to analyse relevant clinical
scenarios using three different methods, and to identify strengths
and weaknesses of these for addressing safety assurance
challenges of RAS in healthcare.



Functional Resonance Application of the Functional Resonance Analysis Method (FRAM)
Analysis to the clinical scenarios.

Human Reliability Application of the Systematic Human Error Reduction and
Analysis Prediction Approach (SHERPA).

Hazard Analysis based on  Application of hazard analysis using bow-ties based on the logic of
NHS clinical safety NHS clinical safety standards, and supported by the NHS Digital
standards Safety Modelling, Assurance and Reporting Toolkit (SMART).

RESULTS

Stakeholder perceptions Interviews with 26 patients, healthcare professionals,
on safety assurance of RAS technology developers and regulators were carried out.

in clinical settings
Their views were grouped into 5 categories.

1. Advantages, Attitudes towards Al are positive and are based on trust in the
disadvantages and impact  health system. Al can increase efficiency and reduce errors,
on patient experience but it can also contribute to delays and errors. There is still a
need for human contact, and the use of autonomous systems
should not disrupt the relationship between patients and

clinicians.

2. Human — RAS interaction Training needs to enable clinicians maintain core clinical skills,
and it needs to help clinicians build a baseline understanding
of Al and its limitations. Clinicians in intensive care have a
strong sense of autonomy. Clinicians need to build trust in Al.
Feedback and alerts can provide clinicians with an awareness

of what the Al is doing.

3. Safety assurance Existing assurance practices are a good starting point for safety
practices assurance of Al in clinical settings. Al evolution poses new
challenges but might be addressed through real-time
monitoring and continuous feedback. A risk-based approach

to Al evolution should be taken. Al can present a black-box




4. Regulation

5. Incident investigation

challenge, and this could be addressed through approaches
towards more explainable Al. The use of synthetic data could
complement real-world data to provide more comprehensive

training data sets.

Existing safety standards for medical devices are a good
starting point for the regulation of Al in clinical settings.
Regulation requires a culture change to deal with Al evolution.
A more iterative approach to regulation will be required.
Developers need to demonstrate they have competence and
expertise in developing safe Al. Developers and regulators
need to establish a dialogue. The type and rigour of the
evidence expected depends on the intended use of the system
and on the types of claims developers are making about their

system.

Al systems can enhance traceability and auditability.
However, responsibility and accountability for incidents might
be pushed onto clinicians. The incident investigation process
needs to include additional actors such as Al experts and Al
developers. The different regulatory bodies for medical
devices, professional practice and health services need to
come together to identify suitable processes for determining

and managing accountability.

Safety assurance
approaches for RAS in

clinical settings

A descriptive scale of automation and autonomy levels was
developed to enable reasoning about the capabilities of RAS in
a clinical setting. Based on this, clinical scenarios were
identified at different levels: baseline (level 1), automation
(level 2) and autonomy (level 5). The clinical scenarios were
analysed using three complementary approaches: FRAM,
human reliability analysis and hazard analysis based on the

NHS Digital clinical safety standards.



6. FRAM can be used to
understand work-as-done
in a clinical system to

inform the design of RAS

7. Human Reliability
Analysis provides a
structured approach for
investigating potential
human — RAS interaction

failures

The evidence generated in this way can be synthesised and

summarised as follows:

FRAM focuses on the performance variability of system
functions, so what it does rather than its actual parts and
composition. It has Safety-ll foundations and so should be
more aligned with how everyday safety is created the majority
of the time, rather than trying to identify low frequency - high
consequence events. It views deviations, goal conflicts and
inherent trade-offs as necessary and normal. It tries to build a

better understanding of work-as-done, not how work can fail.

From this perspective an exemplar FRAM issue would be why
a written prescription is rarely complete despite official
guidance that says it should be. This issue is not written off as
an error or non-compliance issue, but represents an
opportunity for learning: to understand how this variability
depends on the type of drug, the experience of the doctor and
the nurse, the context, time pressure, etc. and why this

adaptive behaviour happens for good reason.

Human Reliability Analysis techniques such as SHERPA focus
on a detailed task analysis, human failure analysis and
Performance Influencing Factors (PIF) analysis to understand
what is driving human failure risks. This is very error
orientated. However, consensus groups of subject matter
experts (SMEs) are an explicit part of the method, so the task
analysis is grounded in frontline worker experience while
being informed by management and safety engineers. So,
going beyond error management, this technique also looks at
optimising system design and developing best practice. This
method has cognitive science and task analysis as its

foundation.



8. NHS Digital clinical
safety standards and
SMART are useful to
identify key hazards at a

higher level of abstraction

From this perspective an exemplar issue would be something
like “right action on wrong object”, e.g. a label printed and
placed on the wrong syringe. The method would then inspect
the PIFs that influence this and seek to design the situation to
eliminate these risks or make them less likely. Non-compliance
would also be of interest, but more to understand the PIFs
from the frontline that influence this rather than bluntly trying

to reinforce the rules.

The NHS Digital clinical safety standards and the SMART
software tool focus on identifying hazards and their
prevention barriers and mitigation barriers using the bowtie
method. This looks at the number and quality of barriers to
prevent the hazard and stop the ultimate outcome we are
trying to avoid. Barriers can have degradation factors and
controls. SMART also uses process diagrams to build up picture
of the task as this is not captured in bowtie analyses. The main
hazards and barriers can be identified without going into the
details of a fine-grained task analysis. This type of analysis
should be familiar to safety engineers and can be quite

technical.

From this perspective an exemplar issue would be something
like the autonomous infusion pump wrongly assumes it has
authority to operate outside of clinical guidelines when in fact
no authority has been granted. Typically, this approach is less
likely to engage with the more intricate issues to do with
trade-offs identified in FRAM and the psychological details
that SHERPA engages with.




RECOMMENDATIONS

1. Strengthen the

relationship between
patients and their clinicians

when RAS are introduced.

Behind every data point that is used to train algorithms for use
in clinical settings there is a patient story and a human life.
Patients in intensive care are particularly vulnerable and have
a strong bond with their clinicians. The use of RAS in clinical
settings should include consideration and design of the patient
experience and protect and strengthen the relationship
between patients and their clinicians. RAS can improve
efficiency and free up clinicians’ time, which could be used for
patient care, but there is a danger that clinicians might be asked
to supervise and “care” for several RAS instead. It is important

that clinicians do not spend less time with patients as more

tasks are taken over by RAS.

2. Deliver training to

enable clinicians to
maintain core clinical skills,
to provide clinicians with a
baseline understanding of
Al, and to educate
clinicians about limitations

of Al.

When the RAS fails or becomes unavailable, staff need to
remain vigilant and be able to take over. They require training

and exposure to maintain their core clinical skills.

Clinicians will become users as well as supervisors of RAS. The

training needs to provide clinician with a baseline
understanding of how Al works so that they are able to identify

limitations and problems.

Staff might rely too much on RAS. They require education

about limitations of Al to help address over-reliance.

3. Consider introduction of

new Al specialist roles

It is unreasonable to expect frontline clinicians to have an
expert understanding of Al and ML technologies. In addition,
they should not be expected to spend more time with the

technology than with their patients.

The introduction of RAS into clinical systems will create a
wealth of context-specific data that could be used to enhance

clinical processes as well as the performance of the RAS itself.




Novel roles, such as an Al specialist nurse, should be developed
with a remit to support the introduction, operation and

maintenance of RAS in their respective clinical settings.

4. Perform hazard analysis
at the level of the clinical
system or pathway of
which the RAS will be part

of.

The focus of hazard analysis and safety assurance should move
on from the narrow focus of RAS in isolation to consider how

the RAS will be integrated into clinical systems.

Hazard analysis should be based on a thorough understanding
of work-as-done. FRAM can be used to study work-as-done
and performance variability in everyday clinical work. Human
Reliability Analysis approaches are useful to study
systematically human — RAS interaction failures. Bowtie
analysis can be used to investigate hazards at a higher level

along the clinical pathway.

5. Design for situation

awareness

Clinicians build situation awareness as an implicit by-product in
everyday clinical work, e.g., due to the close and repeated
interaction with prescriptions, the patient and their vital signs,

and the adjustments they make to treatments.

The introduction of RAS into a clinical system will automate
some of these tasks, and this might disrupt the implicit

maintenance of situation awareness by staff.

Hence the design of clinical systems with integrated RAS needs
to consider this explicitly. Design solutions include dashboards
that follow good information visualisation principles. Alarms
and information-only indicators can alert clinicians to
important developments. There might also be times where
situation awareness is needed more than other times, e.g.,
during handovers between staff and where the RAS is reaching
a state where it can no longer cope with blood glucose

management and may need to hand back control to staff.




Improved situation awareness can also improve trouble

shooting if there are issues and actions to support patient care.

6. Design for handover

The RAS needs to be able to recognise its own performance
boundaries, project into the future clinical scenarios that will
be beyond its performance boundaries and identify suitable
ways to hand over control to the clinician. Handover includes
consideration of: (a) when to hand over; (b) whom to hand over

to; (c) what to hand over; and (d) how to hand over.

A handover could occur if the RAS requests to operate outside
of clinical guidelines, but authority to do so is not given by the
human operators. This is a Human Factors design challenge
because the designer needs to determine how early the system
should make this request. Also, one should not assume that
staff will answer immediately, and so how long the RAS should
wait, what it does in the meantime and what it does should an

answer not be forthcoming all need to be thought through.

The mismanagement of handover could have significant
adverse safety implications. These contingencies and timings

should be investigated so best practices can be determined.

7. Design for performance

variability

Clinicians need to manage competing organisational priorities
and operational demands. They use their experience and
judgement to make trade-offs based on the requirements of a
specific situation. The RAS needs to support rather than

constrain this performance variability and adaptive capacity.

Many operational constraints (e.g., limited number of access
points to infuse drugs) will not change (i.e., be resolved) with
the introduction of RAS. The flexibility to deal with them
appropriately needs to be designed into the clinical system

integrating RAS.




Lack of attention to the need for performance variability could
not only lead to frustrations and inefficiencies, but also safety

issues.

8. Promote existing best
practice and establish an
integrated safety
governance framework for

Al regulation in healthcare

Existing best practices in the development of safety-critical
systems and medical devices should form the foundation for
the development and assurance of RAS in healthcare.
Awareness of these and capability in their use should be
promoted so that new stakeholders (e.g., Al developers) in this

area can draw on these experiences.

Post-market surveillance for learning technologies, the
management of Al evolution, the communication between
manufacturers, users and regulators, and issues of ownership

of data and liability aspects require a broad consensus.

A dialogue has been started between national regulators and
NHS stakeholders (including MHRA, NHSx, NHS Digital, CQC and
BSl), professional bodies (e.g., Chartered Institute of
Ergonomics and Human Factors) and researchers. Such a
whole systems approach is required to define clear interfaces
between the different Al safety facets, and to ensure

ownership and acceptance.

Specifically for the NHS, this should consider inclusion of the

different nations.
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APPENDIX 1 — IDENTIFYING HAZARDS (BOK 1.1)

Identifying hazards is an important function in the design and safety assurance of RAS. This function
will be variable in its level of success. Some of the drivers for this performance variability will be
intrinsic to the function (e.g. the experience of the analyst performing the function and the method
they choose to use), some will be extrinsic to the function (e.g. the time and resources available for
activities to identify hazards), and will be functionally coupled to wider functions upstream and
downstream in the system (e.g. the analyst might have done a similar project before, this enhances
their choice of method and the hazards they “see” for this project, this sparks more grounded debate

and ideas with the subject matter experts and engineers, which leads to design improvements).

Here, we expand the notion of “identifying hazards” not just as a technical issue that focuses on the
mechanical application of methods, but a sociotechnical issue that includes the skills, knowledge and
experience of the analyst, who the rest of the team are and how they are involved, the processes that
are followed, time and resources allowed, and the concepts and theory that guides thinking. As we
see below, these drivers can be mapped so we have a better idea of what makes the performance of

“identifying hazards” flourish rather than stall.

Scope of analysis Identifying hazards for RAS in real world settings can be
complex. In such cases simplifying assumptions might be made
about working practices, and the scope of analysis. However, a
study focused on the technology and the primary task would
give a quite different perspective compared to a study focused
on the context (e.g. clinical pathway) and primary and

secondary tasks and broader related activities.

Granularity of analysis Time, resources and perspective can also affect the granularity
of the analysis. There is a trade-off between the efforts one
expends and the value one gets back, presumably with
diminishing returns. However, some subtle interactions and
unintended consequences might only reveal themselves at a

fine-grained level of detail.

Experience of analyst The experience of the analyst leading the hazard identification

exercise will have a significant effect on how it is organised,




who is involved and what processes are followed. The analyst
might also have specific skills and knowledge to enlighten the

hazard analysis.

Engagement with subject The analyst will only be able to “see” so much. SME’s and
matter experts (SME) and stakeholders need to be engaged with effectively to bring their
stakeholders knowledge, experience and insight to enlighten the hazard

analysis. Who is involved and how they are engaged will

influence success.

Representations Communicating how the task is currently done, and how the
task might be reconfigured with a RAS, can be complex.
Different representations can be used (e.g. process maps, task
analyses and functional diagrams). Pictures and diagrams might
also convey issues to do with the context, layout and interface
design. All of these representations have strengths and
limitations, they will shape the sort of dialogue and feedback

that can be achieved with SME’s and stakeholders.

Concepts, theory and Different approaches and methods will have different
guidewords concepts, theory and guidewords that will shape thought and
dialogue. For example, more traditional engineering-based
approaches might focus on technical issues, whereas human
factors approaches might more readily draw attention to issues
of situation awareness and attention. Methods focusing on a
single task might miss issues with important goal conflicts and
trade-offs between activities. Methods focused on failure
might miss important resilience mechanisms that help to

create safety.

Indeed, there is some suggestion from recently literature that to ensure system safety we must not
only attend to identifying hazards and reducing risks following the ALARP principle (Safety-l), but that

we must also understand the (sometimes hidden and implicit) positive behaviours that create safety



(Safety-11). We must have a good understanding about how safety is normally created in everyday
work, otherwise the introduction of RAS might inadvertently erode resilience behaviours. For
example, the official view of the system might be clear that verbal medication orders should not be
taken and medication prescriptions should always be complete, however enforcing these things could
lead to delayed medication, workarounds, non-compliance and disuse. Sometimes seemingly

erroneous behaviour is practiced to keep the system safe.

Identifying hazards will not be perfect and factors driving its performance need to be understood.



APPENDIX 2 — DEFINING THE OPERATING ENVIRONMENT (BOoK 1.1.2)

Healthcare is a complex and diverse setting with many different operating environments. A family
doctor’s practice is very different from a hospital setting, and even within a hospital there is diversity
across operating environments such as surgery or the hospital pharmacy. Reflecting this broad range
of potential operating environments is the large number of different types of artificial intelligence (Al)
and machine learning (ML) applications in healthcare. Examples include clinician-facing applications
(e.g. breast cancer screening algorithms), patient-facing mobile phone apps (e.g. symptom checkers)

and tools to support healthcare business processes (e.g. missed appointment predictors).

The definition of the operating environment can, therefore, be challenging for developers of Al and
ML applications in healthcare. Drawing an accurate boundary around the Al / ML system and the
operating environment is not straightforward, and can be done in different ways. To date, most
developers have bounded the Al / ML system very narrowly and assumed a well-defined task or
function in order to reduce complexity. For example, one way of looking at an algorithm for breast
cancer screening is to consider only a set of mammograms as input and the likelihood of malignancy
as the output. However, this approach runs into difficulties quickly when the wider use context needs
to be considered, for example when an algorithm trained on data from a specific population or health
system (e.g. patients in the NHS in the UK) is deployed in another population or health system (e.g.

patients in the US). Performance figures tend to drop quickly in these situations.

Another option is to define the operating environment as the clinical system within which the Al / ML
will be used. This perspective recognises that the Al / ML interacts with other technology and with
people. Care is generally delivered by teams of healthcare professionals working as clinical teams,
and supported by a large number of tools and technologies. Al and ML systems, even with increasing

autonomy, might be best understood as part of such clinical teams.

A useful approach to model clinical systems at the functional level is the Functional Resonance Analysis
Method (FRAM). FRAM decomposes the clinical system into functions, to move away from “what a
system is” to “what it does”. Each function is examined for its potential performance variability, then
interactions between functions are examined. “Functional resonance” is used to describe how
outcomes can “emerge” from everyday variability of many functions, to move away from simple

notions of “cause and effect”. FRAM is built on four principles:



e The principle of equivalence of success and failure — Success and failure come from the same
source, i.e. they are not fundamentally different in nature. Approximate adjustments mean
that people adapt successful most of the time but sometimes variability in performance will

lead to unsatisfactory outcomes.

e The principle of approximate adjustments — Due to limitations in resource, uncertainties,
underspecified systems and variance demands people will adjust to suit the situation. This

gives rise to performance variability which is inevitable, ubiquitous and necessary.

e The principle of emergence — Complex systems with many links and fluctuating approximate
adjustments become intractable as it is impossible to predict what will happen precisely

beyond expecting regular events.

e The principle of functional resonance — Functions represent the different things a system
does. Due to approximate adjustments these will exhibit performance variability. Functional
resonance refers to how functions may impact each other’s performance variability. Small

changes could lead to disproportionally large effects and vice versa.

The strength of FRAM is that it supports the analyst or system designer in reasoning about
interactions. For example, when introducing an autonomous infusion pump into the intensive care
unit, FRAM encourages consideration of not just the algorithmic performance (e.g. whether the
infusion pump can control a patient’s blood sugar levels by giving insulin), but also of how the
autonomous infusion pump communicates with nurses and doctors as well as other systems, such as
the electronic patient record. This provides a more realistic representation of the complexity of the

operational environment in healthcare settings.



APPENDIX 3 — DEFINING OPERATING SCENARIOS (BOK 1.1.3)

The designers of artificial intelligence (Al) and machine learning (ML) applications need to scope,
bound and articulate clearly the situations for which the application is going to be used, and how it is
going to be used. In the case of clinical settings, it is very likely that even autonomous systems will
have a significant degree of interaction with people. For example, an autonomous infusion pump will

require interaction with the nurse in case of unexpected patient deterioration.

It is important that the definition of operating scenarios is done based on operational realities (work-
as-done) rather than through an abstract view of what should be done in principle (work-as-imagined).
Typically, a range of situations needs to be considered, such as routine operational scenarios,
exceptional or emergency response scenarios, and maintenance and inspection scenarios.
Understanding of the operational scenario includes consideration of what specifically needs to be
done by the application and by any users, in what kind of order different activities need to be done,
what kinds of information are required to complete an activity, what forms of interactions and
communication take place, and what other activities people interacting with the application might be

engaged with at the same time.

Definition of operating scenarios can make use of analysis techniques for understanding and
representing clinical work. Examples include Hierarchical Task Analysis (HTA) and Functional

Resonance Analysis (FRAM).

HTA represents human activities based on a theory of goal-directed behaviour, and includes a
hierarchy of goals and sub-goals linked by plans, which describe how sub-goals combine to achieve
the higher-level goal. Plans can be used to express any kind of algorithm, e.g. simple sequential
ordering (such as do step 1 to step 3 in order), free ordering (do steps 1, 2, 3 in any order), as well as
more complex loops (such as do step 1 and step 2 in order until signal A is active, then do step 3). This
representation creates a tree-like structure, where the leaves represent task steps that are considered
elementary (e.g. basic manual operations) or where further decomposition is not considered

necessary.

FRAM decomposes the clinical system into functions, to move away from “what a system is” to “what
it does”. Each function is examined for its potential performance variability, then interactions between
functions are examined. “Functional resonance” is used to describe how outcomes can “emerge” from

everyday variability of many functions, to move away from simple notions of “cause and effect”.



APPENDIX 4 — IDENTIFYING HAZARDOUS SYSTEM BEHAVIOUR (BOK

1.2)

One of the main mechanisms for identifying hazards and error prone conditions are the methods used
to help identify hazardous system behaviour. Methods shape thinking and dialogues, and influence
what can be “seen” in the context before the RAS intervention and what may happen when the RAS
intervention is deployed. Methods will influence requisite variety, i.e. the ability to foresee issues that

may arise in future systems that do and do not yet exist.

Understanding the coverage, strengths and weaknesses of a method is important for its determining
its adequacy for identifying hazardous system behaviour. However, it is impossible to run method
comparison studies that do not suffer from confounding variables. For example, there is always the
“evaluator effect”, and even if you keep the same evaluator then they learn over successive
applications of different methods to the same area, which means that the study is then confounded.
Furthermore, where some methods engage with stakeholders and subject matter experts (SMEs) then
their contributions does not necessarily have to be aligned with the method, serendipity may help
discover insights. Accepting these limitations, we may still compare the foundational theory, concepts
and representations that are tied up in the use of methods, which has consequences for

understanding system safety.
1) Functional Resonance Analysis Method (FRAM)

FRAM focuses on the performance variability of system functions, so what it does rather than its actual
parts and composition. It has Safety-Il foundations and so should be more aligned with how everyday
safety is created the majority of the time, rather than trying to identify low frequency - high
consequence events. It views deviations, goal conflicts and inherent trade-offs as necessary and

normal. It tries to build a better understanding of work-as-done, not how work can fail.

From this perspective an exemplar FRAM issue would be why a written prescription is rarely complete
despite official guidance that says it should be. This issue is not written off as an error or non-
compliance issue, but represents an opportunity for learning: to understand how this variability
depends on the type drug, the experience of the doctor and the nurse, the context, time pressure,

etc. and why this adaptive behaviour happens for good reason.



2) Systematic Human Error Reduction and Prediction Approach (SHERPA)

SHERPA focuses on a detailed task analysis, human failure analysis and Performance Influencing
Factors (PIF) analysis to understand what is driving human failure risks. This is very error orientated.
However, consensus groups of subject matter experts (SMEs) are an explicit part of the method, so
the task analysis is grounded in frontline worker experience while being informed by management
and safety engineers. So, going beyond error management, this technique also looks at optimising
system design and developing best practice. This method has cognitive science and task analysis as its

foundation.

From this perspective an exemplar SHERPA issue would be something like “right action on wrong
object”, e.g. a label printed and placed on the wrong syringe. The method would then inspect the PIFs
that influence this and seek to design the situation to eliminate these risks or make them less likely.
Non-compliance would also be of interest, but more to understand the PIFs from the frontline that
influence this rather than bluntly trying to reinforce the rules. Something more out of scope of SHERPA
would be technical issues like the autonomous infusion pump fails to communicate with the health IT
system because the network is down, or updates to health IT software meaning current request for

authority to operate outside of clinical guidelines (extended autonomy) is cancelled.

3) Safety Modelling, Assurance and Reporting Toolset (SMART)

SMART focuses on identifying hazards and their prevention barriers and mitigation barriers using the
bowtie method. This looks at the number and quality of barriers to prevent the hazard and stop the
ultimate outcome we are trying to avoid. Barriers can have degradation factors and controls. SMART
also uses process diagrams to build up picture of the task as this is not captured in bowtie analyses.
The main hazards and barriers can be identified without going into the details of a fine-grained task

analysis. This type of analysis should be familiar to safety engineers and can be quite technical.

From this perspective an exemplar SMART issue would be something like the autonomous infusion
pump wrongly assumes it has authority to operate outside of clinical guidelines when in fact no
authority has been granted. Typically, SMART is less likely to engage with the more intricate issues to

do with trade-offs identified in FRAM and the psychological details that SHERPA engages with.

The choice of method will impact the understanding of system safety, which will in turn impact design

and safety management.



APPENDIX 5 — CONSIDERING HUMAN-MACHINE INTERACTION (BOK

1.2.1)

Artificial intelligence (Al) and machine learning (ML) applications in healthcare are often evaluated on
narrowly defined tasks. However, the real challenges for the adoption of Al and ML will arise when
algorithms are integrated into clinical systems to deliver a service in collaboration with clinicians as
well as other technology. It is at this clinical system level, where teams consisting of healthcare
professionals and Al systems cooperate and collaborate to provide a service, that human factors

challenges will come to the fore.

When automation started to be deployed at scale in industrial systems, human factors research on
“automation surprises” and the “ironies of automation” explained some of the problems that
appeared with the introduction of automation. The fundamental fallacy is the assumption that
automation might replace people, but in actual reality the use of automation changes and transforms
what people do. Clinical systems are not necessarily comparable to commercial aircraft or
autonomous vehicles. However, a look across these different industries can be useful to highlight
potential human factors challenges that are likely to require consideration when adopting Al and ML
in patient care. Such human factors challenges relate to cognitive aspects (automation bias and
human performance), handover and communication between clinicians and Al systems, situation

awareness and the impact on the interaction with patients.

The table provides an illustration of human factors issues that might require consideration in the

example of the design of an autonomous infusion pump to be deployed in the intensive care setting.

HF Challenge

Description

Example

Handover

The autonomous system needs to

be able to recognise its own

performance boundaries, project
into the future clinical scenarios
that will be beyond its performance
boundaries, and identify suitable
ways to hand over control to the
clinician. Handover includes
consideration of: (a) when to hand

over; (b) whom to hand over to; (c)

The patient’s blood sugar levels do not
respond sufficiently to the insulin given by
the autonomous infusion pump. The pump
predicts and recognises that it will not be
able to control the patient’s blood sugar.
The pump triggers an alert on the electronic
health record, raises an audible alarm, and
requests the nurse to take over. The nurse
can review the reason for the alert, the

history of the pump’s insulin management,




what to hand over; and (d) how to

and its projection into the future, and act

hand over. accordingly.
Performance Clinicians need to manage | The nurse realises that insulin has not yet
Variability competing organisational priorities | been prescribed for the patient even

and operational demands. They use
their experience and judgement to
make trade-offs based on the
requirements of a specific situation.
The autonomous system needs to
support rather than constrain this
and

performance variability

adaptive capacity.

though they will likely need it. The nurse
goes and finds the doctor, explains the
situation, and the doctor issues a verbal
medication order and will follow this up
with the written prescription later
(performance variability). The autonomous
system requires an electronic medication
order, but allows for a manual override. The
autonomous system sends reminders to the
doctor with a request for completing the

electronic medication order.

Automation bias

When a system works well most of
the time, clinicians start to rely on
it. In some situations, this can lead
to overreliance, for example when
the system takes an inappropriate
action but the clinician does not
recognise this because they trust

the system.

Due to sepsis the patient requires tighter
control of blood sugar levels than usual.
The autonomous system has managed
successfully septic patients before but, in
this instance, fails to recognise the need for
tighter glycaemic control. The autonomous
clinician

system provides interpretable

justification and explanation of its

decisions, and the clinician, who has

received training on potentially

inappropriate behaviours of the
autonomous system, is able to spot the

discrepancy and act accordingly.

Supervision

Clinicians are both users and
supervisors of the autonomous
system. They need to understand
not only how to operate the

autonomous system (e.g. loading a

The autonomous infusion pump is
operating on the sliding scale algorithm for
administering insulin. It classifies the
patient’s response to the current insulin

infusion as requiring transition to another




syringe), but also how to recognise
potential  failure modes or
deviations from appropriate
behaviour or changes in the
environment that might move the
autonomous system outside of its

design envelope.

scale with 70%, as opposed to 30% for
staying within the current scale. The
autonomous system initiates and the
transition, and activates an “uncertainty

marker” to alert the clinician.




APPENDIX 6 — VALIDATION OF SAFETY REQUIREMENTS (BOK 1.3.1)

The introduction of artificial intelligence (Al) and machine learning (ML) applications into clinical
systems can create challenges for traditional design approaches that require clearly defined and
precise specifications of the operating environment, operational scenarios and of the resulting safety
requirements that bound the behaviour of the Al / ML system. Healthcare is a complex domain, and
clinical systems are made up of many different actors and technologies all interacting with one

another in ways that can be very dynamic and responsive to the requirements of a specific situation.

One way of both eliciting and validating safety requirements (though not the only one, nor even a
standalone approach) is to seek input and feedback from stakeholders, e.g. through simulation or
interviews. This approach is particularly appropriate where human —machine interaction and training

are concerned.

For example, in the case of the design of an autonomous infusion pump to be used in intensive care,
input from stakeholders might produce training requirements as shown below. Feedback from
stakeholders on a design prototype can then provide information about the extent to which the

requirements have been met.

Clinicians need to maintain When an autonomous system fails or becomes unavailable,
core clinical skills staff need to remain vigilant and be able to take over. They

require training and exposure to maintain their clinical skills.

Clinicians need to build a Clinicians will become users as well as supervisors of Al
baseline understanding of systems. They shall be provided with a baseline understanding
Al and its limitations of how Al works so that they are able to identify limitations and

problems.

Training needs to address Staff might rely too much on Al. They shall receive training in
over-reliance on Al core clinical skills and education about limitations of Al to help

address over-reliance.

Similarly, high level safety requirements relating to autonomy and control might be validated through

feedback on a proposed interaction design.



Clinicians need to be able

to maintain autonomy.

Clinicians feel responsible for their patient and want to remain
in control. Autonomous systems can challenge this sense of
autonomy, and clinicians need to be allowed to remain in

charge, e.g. through manual override options.

Feedback and alerts shall
provide clinicians with an
awareness of what the Al is

doing

Feedback and alerts can help to maintain situation awareness
and stay in control of the overall treatment and care for the
patient. The design shall determine clearly when an alert is

raised. The system shall avoid alert fatigue or overload.

Clinicians need to be able

to build trust in Al

Clinicians have to trust Al in order to realise its benefits. The
interaction design shall include training and feedback. The Al
system shall be introduced gradually in low-risk areas over

time.




APPENDIX 7 — DEFINING SAFE SYSTEM RESPONSES TO CHANGES (BOK

2.6)

Healthcare is delivered in a highly dynamic and non-deterministic environment, and successful
outcomes are dependent on actions and decisions made by humans. However, humans are fallible
and unintentional errors and mistakes have led to unsafe care outcomes. Application of artificial
intelligence (Al) offers great potential in this domain by: automating routine tasks that are susceptible
to human error e.g. transcribing prescriptions and printing syringe labels; and working autonomously

to monitor and manage care scenarios e.g. optimising insulin infusion regime.

However, by removing the HCP from the real-time, closed loop, care pathway there is a significant risk
that they will lose their situational awareness and their ability to deliver effective care could be
compromised. So, whilst there is a great opportunity to improve efficiency within healthcare, careful
consideration needs to be given to monitoring and handover protocols such that effective human
intervention occurs should the Al’s behaviour exhibit characteristics that could cause or contribute to

patient harm.

The following guidelines provide a framework which will support effective monitoring and handover

between Al technology and HCPs

Upskill HCPs HCPs will need to establish an understanding of the technology,
its capabilities and weaknesses so they are better placed to

recognise anomalous behaviour.

Baseline and understand Care pathways need to be defined and baselined (representing
care pathway work as is done) so that the contribution and authority of Al is

clearly expressed and understood within the clinical team.

Define Al capability The specific capability that the Al is providing needs to be
defined and characterised in the context of supporting the care

pathway.

This must consider the interaction between the Al and the HCP

both as a user and also a supervisor.




This must consider the authority limits autonomous Al can

have.

This must consider the monitoring and alerting mechanisms
and whether these are undertaken by the Al itself or

independently by another element of the care system.

Conduct pre-emptive

hazard analysis

Need to understand the potential patient-level harm effects
that could occur in the care-pathway and the specific
contributions Al could make. The severity of harm outcome
and the significance of the Al contribution will impact the

definition of the following key activities.

Develop monitoring SOP

Need to develop a regime within the care-pathway which will
ensure the continued safe operation of the Al. This will be
dictated by the capability that the Al is providing (automation

and/or autonomy) but typically would need to consider:

Pro-active or re-active: HCP routinely monitors behaviour of Al

or responds to an alert or alarm.

Frequency: sufficient to maintain situational awareness but not

so frequent that it compromises efficiency

Trends: does the monitoring indicate progression to a unsafe

state or imminent point of handover.

Escalation: is there a need for a monitoring HCP to seek second

opinion or high authority before initiating any action

Monitoring architecture: this needs to be defined and
consideration given to whether the Al simply monitors itself,
whether the Al is monitored independently by another element

of the care system or whether it's a combination of both.




Develop hand-over SOP

Need to develop a regime within the care pathway, which will
ensure timely HCP intervention when required. This will be
dictated by the capability that the Al is providing (automation

and/or autonomy) but typically would need to consider:

Definition of safe limits: the limit of authority the Al can have
before HCP intervention is required needs to be defined.
Definition should consider the need for soft limits i.e. those
that can be transgressed but signify an impending handover
requirement. Hard limits i.e. those that must never be
exceeded need to be defined. The protocol needs to consider
the degree of authority the Al has; does it have the same as a

HCP or is it restricted to a lower level.

Definition of transfer state: the Al's behaviour whilst a
handover is being determined needs to be specified. Does the
Al continue to perform its function which may result in a
change in outcome, does it maintain a steady state of output
or default to previous know good (safe) output. The period of

time that the transfer state can persist needs to be defined.

Definition of safe state: the Al’s behaviour once authority has
been relinquished needs to be defined. Does the Al revert to a
“off” state and dissociate itself from the care pathway or does
it continue to function in “hot standby” in order to support a

subsequent transfer of authority back from the HCP.

Definition of re-engagement criteria: the criteria and process

for re-engagement of the Al needs to be defined.

Definition of audit log: an audit log may be needed to support
informed and safe handover of authority to a HCP. It will be
necessary to identify those clinical variables, environmental
conditions and system parameters that influenced the learning.
The HCP will need to be able to quickly assimilate the clinical

scenario and take effective mitigating action.




Simulation and dry-runs

Need to train HCPs in execution of the SOPs potentially through
simulation (outside of the care environment) and dry-runs
(inside the care environment) of hazard scenarios. This needs
to verify the effectiveness of the SOP and the ability of the

organisation to follow it in real-life scenarios.

Re-active

management

incident

There is a need for an organisation to recognise when handover
between the Al and HCPs has resulted in an incident or near-
miss. This needs to be accommodated in the organisation’s
existing service / safety management process. Such events
need to be reviewed and the impact on the organisation’s

safety case and understanding of Al technology considered.
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