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SCIENTIFIC ABSTRACT

BACKGROUND AND AIMS 

This report explores safety assurance challenges of robotic and autonomous systems (RAS) in 

healthcare using the example of intravenous (IV) medication management systems within an intensive 

care unit (ICU) setting.  The report also investigates safety assurance strategies to address these 

challenges.  Findings are presented from a multi-disciplinary qualitative study that investigated 

intravenous infusion practices in one ICU in an English National Health Service (NHS) hospital.   

The focus of the study was the clinical system rather than the technology as such.  The study, 

therefore, explored safety assurance challenges at the intersection of engineering and human factors.     

The project addressed the following study questions: 

• Q1:  What are perceptions of different stakeholder groups of safety assurance of autonomous 

IV medication management systems in ICU?   

• Q2:  What are strengths and weaknesses of representative assurance methods for assuring 

the safety of autonomous IV medication management systems?    

METHODS  

The study design utilised a multi-disciplinary qualitative research approach organised into two 

research strands consisting of four research activities. 

Research Strand 1: Stakeholder perceptions of AI in healthcare 

The aim of this research strand was to describe stakeholder 
perceptions on safety assurance of AI and autonomous systems for 
IV medication management in ICU settings.  The research strand 
consisted of one research activity.   

Thematic Analysis 26 semi-structured interviews conducted with a purposive sample 
of stakeholders consisting of patients, hospital staff, technology 
developers and regulators.       

Research Strand 2: Safety assurance methods and strategies 

The aim of this research strand was to analyse relevant clinical 
scenarios using three different methods, and to identify strengths 
and weaknesses of these for addressing safety assurance 
challenges of RAS in healthcare.  



Functional Resonance 
Analysis 

Application of the Functional Resonance Analysis Method (FRAM) 
to the clinical scenarios.       

Human Reliability 
Analysis 

Application of the Systematic Human Error Reduction and 
Prediction Approach (SHERPA).  

Hazard Analysis based on 
NHS clinical safety 

standards 

Application of hazard analysis using bow-ties based on the logic of 
NHS clinical safety standards, and supported by the NHS Digital 
Safety Modelling, Assurance and Reporting Toolkit (SMART).  

RESULTS  

Stakeholder perceptions 

on safety assurance of RAS 

in clinical settings 

Interviews with 26 patients, healthcare professionals, 

technology developers and regulators were carried out.   

Their views were grouped into 5 categories.   

1. Advantages, 

disadvantages and impact 

on patient experience 

Attitudes towards AI are positive and are based on trust in the 

health system.  AI can increase efficiency and reduce errors, 

but it can also contribute to delays and errors.  There is still a 

need for human contact, and the use of autonomous systems 

should not disrupt the relationship between patients and 

clinicians.      

2. Human – RAS interaction Training needs to enable clinicians maintain core clinical skills, 

and it needs to help clinicians build a baseline understanding 

of AI and its limitations.  Clinicians in intensive care have a 

strong sense of autonomy.  Clinicians need to build trust in AI.  

Feedback and alerts can provide clinicians with an awareness 

of what the AI is doing.    

3. Safety assurance 

practices 

Existing assurance practices are a good starting point for safety 

assurance of AI in clinical settings.  AI evolution poses new 

challenges but might be addressed through real-time 

monitoring and continuous feedback.  A risk-based approach 

to AI evolution should be taken.  AI can present a black-box 



challenge, and this could be addressed through approaches 

towards more explainable AI.   The use of synthetic data could 

complement real-world data to provide more comprehensive 

training data sets.      

4. Regulation Existing safety standards for medical devices are a good 

starting point for the regulation of AI in clinical settings.  

Regulation requires a culture change to deal with AI evolution.  

A more iterative approach to regulation will be required.  

Developers need to demonstrate they have competence and 

expertise in developing safe AI.  Developers and regulators 

need to establish a dialogue.  The type and rigour of the 

evidence expected depends on the intended use of the system 

and on the types of claims developers are making about their 

system. 

5. Incident investigation AI systems can enhance traceability and auditability.  

However, responsibility and accountability for incidents might 

be pushed onto clinicians.  The incident investigation process 

needs to include additional actors such as AI experts and AI 

developers.  The different regulatory bodies for medical 

devices, professional practice and health services need to 

come together to identify suitable processes for determining 

and managing accountability.    

Safety assurance 

approaches for RAS in 

clinical settings 

A descriptive scale of automation and autonomy levels was 

developed to enable reasoning about the capabilities of RAS in 

a clinical setting.  Based on this, clinical scenarios were 

identified at different levels: baseline (level 1), automation 

(level 2) and autonomy (level 5).  The clinical scenarios were 

analysed using three complementary approaches: FRAM, 

human reliability analysis and hazard analysis based on the 

NHS Digital clinical safety standards.   



The evidence generated in this way can be synthesised and 

summarised as follows:    

6. FRAM can be used to 

understand work-as-done 

in a clinical system to 

inform the design of RAS 

FRAM focuses on the performance variability of system 

functions, so what it does rather than its actual parts and 

composition. It has Safety-II foundations and so should be 

more aligned with how everyday safety is created the majority 

of the time, rather than trying to identify low frequency - high 

consequence events. It views deviations, goal conflicts and 

inherent trade-offs as necessary and normal. It tries to build a 

better understanding of work-as-done, not how work can fail.

From this perspective an exemplar FRAM issue would be why 

a written prescription is rarely complete despite official 

guidance that says it should be. This issue is not written off as 

an error or non-compliance issue, but represents an 

opportunity for learning: to understand how this variability 

depends on the type of drug, the experience of the doctor and 

the nurse, the context, time pressure, etc. and why this 

adaptive behaviour happens for good reason.  

7. Human Reliability 

Analysis provides a 

structured approach for 

investigating potential 

human – RAS interaction 

failures   

Human Reliability Analysis techniques such as SHERPA focus 

on a detailed task analysis, human failure analysis and 

Performance Influencing Factors (PIF) analysis to understand 

what is driving human failure risks. This is very error 

orientated. However, consensus groups of subject matter 

experts (SMEs) are an explicit part of the method, so the task 

analysis is grounded in frontline worker experience while 

being informed by management and safety engineers. So, 

going beyond error management, this technique also looks at 

optimising system design and developing best practice. This 

method has cognitive science and task analysis as its 

foundation.  



From this perspective an exemplar issue would be something 

like “right action on wrong object”, e.g. a label printed and 

placed on the wrong syringe. The method would then inspect 

the PIFs that influence this and seek to design the situation to 

eliminate these risks or make them less likely. Non-compliance 

would also be of interest, but more to understand the PIFs 

from the frontline that influence this rather than bluntly trying 

to reinforce the rules.  

8. NHS Digital clinical 

safety standards and 

SMART are useful to 

identify key hazards at a 

higher level of abstraction  

The NHS Digital clinical safety standards and the SMART 

software tool focus on identifying hazards and their 

prevention barriers and mitigation barriers using the bowtie 

method. This looks at the number and quality of barriers to 

prevent the hazard and stop the ultimate outcome we are 

trying to avoid. Barriers can have degradation factors and 

controls. SMART also uses process diagrams to build up picture 

of the task as this is not captured in bowtie analyses. The main 

hazards and barriers can be identified without going into the 

details of a fine-grained task analysis. This type of analysis 

should be familiar to safety engineers and can be quite 

technical. 

From this perspective an exemplar issue would be something 

like the autonomous infusion pump wrongly assumes it has 

authority to operate outside of clinical guidelines when in fact 

no authority has been granted. Typically, this approach is less 

likely to engage with the more intricate issues to do with 

trade-offs identified in FRAM and the psychological details 

that SHERPA engages with. 



RECOMMENDATIONS 

1. Strengthen the 

relationship between 

patients and their clinicians 

when RAS are introduced. 

Behind every data point that is used to train algorithms for use 

in clinical settings there is a patient story and a human life.  

Patients in intensive care are particularly vulnerable and have 

a strong bond with their clinicians.  The use of RAS in clinical 

settings should include consideration and design of the patient 

experience and protect and strengthen the relationship 

between patients and their clinicians.  RAS can improve 

efficiency and free up clinicians’ time, which could be used for 

patient care, but there is a danger that clinicians might be asked 

to supervise and “care” for several RAS instead.  It is important 

that clinicians do not spend less time with patients as more 

tasks are taken over by RAS.   

2. Deliver training to 

enable clinicians to 

maintain core clinical skills, 

to provide clinicians with a 

baseline understanding of 

AI, and to educate 

clinicians about limitations 

of AI.   

When the RAS fails or becomes unavailable, staff need to 

remain vigilant and be able to take over.  They require training 

and exposure to maintain their core clinical skills.     

Clinicians will become users as well as supervisors of RAS.  The 

training needs to provide clinician with a baseline 

understanding of how AI works so that they are able to identify 

limitations and problems. 

Staff might rely too much on RAS.  They require education 

about limitations of AI to help address over-reliance.   

3. Consider introduction of 

new AI specialist roles 

It is unreasonable to expect frontline clinicians to have an 

expert understanding of AI and ML technologies.  In addition, 

they should not be expected to spend more time with the 

technology than with their patients.  

The introduction of RAS into clinical systems will create a 

wealth of context-specific data that could be used to enhance 

clinical processes as well as the performance of the RAS itself.  



Novel roles, such as an AI specialist nurse, should be developed 

with a remit to support the introduction, operation and 

maintenance of RAS in their respective clinical settings.  

4. Perform hazard analysis 

at the level of the clinical 

system or pathway of 

which the RAS will be part 

of.  

The focus of hazard analysis and safety assurance should move 

on from the narrow focus of RAS in isolation to consider how 

the RAS will be integrated into clinical systems. 

Hazard analysis should be based on a thorough understanding 

of work-as-done.  FRAM can be used to study work-as-done 

and performance variability in everyday clinical work.  Human 

Reliability Analysis approaches are useful to study 

systematically human – RAS interaction failures.  Bowtie 

analysis can be used to investigate hazards at a higher level 

along the clinical pathway.            

5. Design for situation 

awareness 

Clinicians build situation awareness as an implicit by-product in 

everyday clinical work, e.g., due to the close and repeated 

interaction with prescriptions, the patient and their vital signs, 

and the adjustments they make to treatments.   

The introduction of RAS into a clinical system will automate 

some of these tasks, and this might disrupt the implicit 

maintenance of situation awareness by staff.  

Hence the design of clinical systems with integrated RAS needs 

to consider this explicitly.  Design solutions include dashboards 

that follow good information visualisation principles. Alarms 

and information-only indicators can alert clinicians to 

important developments.  There might also be times where 

situation awareness is needed more than other times, e.g., 

during handovers between staff and where the RAS is reaching 

a state where it can no longer cope with blood glucose 

management and may need to hand back control to staff.   



Improved situation awareness can also improve trouble 

shooting if there are issues and actions to support patient care. 

6. Design for handover The RAS needs to be able to recognise its own performance 

boundaries, project into the future clinical scenarios that will 

be beyond its performance boundaries and identify suitable 

ways to hand over control to the clinician.   Handover includes 

consideration of: (a) when to hand over; (b) whom to hand over 

to; (c) what to hand over; and (d) how to hand over.   

A handover could occur if the RAS requests to operate outside 

of clinical guidelines, but authority to do so is not given by the 

human operators. This is a Human Factors design challenge 

because the designer needs to determine how early the system 

should make this request.  Also, one should not assume that 

staff will answer immediately, and so how long the RAS should 

wait, what it does in the meantime and what it does should an 

answer not be forthcoming all need to be thought through.  

The mismanagement of handover could have significant 

adverse safety implications.  These contingencies and timings 

should be investigated so best practices can be determined.  

7. Design for performance 

variability 

Clinicians need to manage competing organisational priorities 

and operational demands.  They use their experience and 

judgement to make trade-offs based on the requirements of a 

specific situation.  The RAS needs to support rather than 

constrain this performance variability and adaptive capacity.  

Many operational constraints (e.g., limited number of access 

points to infuse drugs) will not change (i.e., be resolved) with 

the introduction of RAS.  The flexibility to deal with them 

appropriately needs to be designed into the clinical system 

integrating RAS.   



Lack of attention to the need for performance variability could 

not only lead to frustrations and inefficiencies, but also safety 

issues.  

8. Promote existing best 

practice and establish an 

integrated safety 

governance framework for 

AI regulation in healthcare 

Existing best practices in the development of safety-critical 

systems and medical devices should form the foundation for 

the development and assurance of RAS in healthcare.  

Awareness of these and capability in their use should be 

promoted so that new stakeholders (e.g., AI developers) in this 

area can draw on these experiences.   

Post-market surveillance for learning technologies, the 

management of AI evolution, the communication between 

manufacturers, users and regulators, and issues of ownership 

of data and liability aspects require a broad consensus.   

A dialogue has been started between national regulators and 

NHS stakeholders (including MHRA, NHSx, NHS Digital, CQC and 

BSI), professional bodies (e.g., Chartered Institute of 

Ergonomics and Human Factors) and researchers.  Such a 

whole systems approach is required to define clear interfaces 

between the different AI safety facets, and to ensure 

ownership and acceptance.   

Specifically for the NHS, this should consider inclusion of the 

different nations.   
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APPENDIX 1 – IDENTIFYING HAZARDS (BOK 1.1) 
Identifying hazards is an important function in the design and safety assurance of RAS. This function 

will be variable in its level of success. Some of the drivers for this performance variability will be 

intrinsic to the function (e.g. the experience of the analyst performing the function and the method 

they choose to use), some will be extrinsic to the function (e.g. the time and resources available for 

activities to identify hazards), and will be functionally coupled to wider functions upstream and 

downstream in the system (e.g. the analyst might have done a similar project before, this enhances 

their choice of method and the hazards they “see” for this project, this sparks more grounded debate 

and ideas with the subject matter experts and engineers, which leads to design improvements). 

Here, we expand the notion of “identifying hazards” not just as a technical issue that focuses on the 

mechanical application of methods, but a sociotechnical issue that includes the skills, knowledge and 

experience of the analyst, who the rest of the team are and how they are involved, the processes that 

are followed, time and resources allowed, and the concepts and theory that guides thinking. As we 

see below, these drivers can be mapped so we have a better idea of what makes the performance of 

“identifying hazards” flourish rather than stall.  

Scope of analysis Identifying hazards for RAS in real world settings can be 

complex. In such cases simplifying assumptions might be made 

about working practices, and the scope of analysis. However, a 

study focused on the technology and the primary task would 

give a quite different perspective compared to a study focused 

on the context (e.g. clinical pathway) and primary and 

secondary tasks and broader related activities.      

Granularity of analysis Time, resources and perspective can also affect the granularity 

of the analysis. There is a trade-off between the efforts one 

expends and the value one gets back, presumably with 

diminishing returns. However, some subtle interactions and 

unintended consequences might only reveal themselves at a 

fine-grained level of detail.        

Experience of analyst The experience of the analyst leading the hazard identification 

exercise will have a significant effect on how it is organised, 



who is involved and what processes are followed. The analyst 

might also have specific skills and knowledge to enlighten the 

hazard analysis.   

Engagement with subject 

matter experts (SME) and 

stakeholders 

The analyst will only be able to “see” so much. SME’s and 

stakeholders need to be engaged with effectively to bring their 

knowledge, experience and insight to enlighten the hazard 

analysis. Who is involved and how they are engaged will 

influence success. 

Representations Communicating how the task is currently done, and how the 

task might be reconfigured with a RAS, can be complex. 

Different representations can be used (e.g. process maps, task 

analyses and functional diagrams). Pictures and diagrams might 

also convey issues to do with the context, layout and interface 

design. All of these representations have strengths and 

limitations, they will shape the sort of dialogue and feedback 

that can be achieved with SME’s and stakeholders.  

Concepts, theory and 

guidewords 

Different approaches and methods will have different 

concepts, theory and guidewords that will shape thought and 

dialogue. For example, more traditional engineering-based 

approaches might focus on technical issues, whereas human 

factors approaches might more readily draw attention to issues 

of situation awareness and attention. Methods focusing on a 

single task might miss issues with important goal conflicts and 

trade-offs between activities. Methods focused on failure 

might miss important resilience mechanisms that help to 

create safety. 

Indeed, there is some suggestion from recently literature that to ensure system safety we must not 

only attend to identifying hazards and reducing risks following the ALARP principle (Safety-I), but that 

we must also understand the (sometimes hidden and implicit) positive behaviours that create safety 



(Safety-II). We must have a good understanding about how safety is normally created in everyday 

work, otherwise the introduction of RAS might inadvertently erode resilience behaviours. For 

example, the official view of the system might be clear that verbal medication orders should not be 

taken and medication prescriptions should always be complete, however enforcing these things could 

lead to delayed medication, workarounds, non-compliance and disuse. Sometimes seemingly 

erroneous behaviour is practiced to keep the system safe. 

Identifying hazards will not be perfect and factors driving its performance need to be understood. 



APPENDIX 2 – DEFINING THE OPERATING ENVIRONMENT (BOK 1.1.2) 
Healthcare is a complex and diverse setting with many different operating environments.  A family 

doctor’s practice is very different from a hospital setting, and even within a hospital there is diversity 

across operating environments such as surgery or the hospital pharmacy.  Reflecting this broad range 

of potential operating environments is the large number of different types of artificial intelligence (AI) 

and machine learning (ML) applications in healthcare.  Examples include clinician-facing applications 

(e.g. breast cancer screening algorithms), patient-facing mobile phone apps (e.g. symptom checkers) 

and tools to support healthcare business processes (e.g. missed appointment predictors).   

The definition of the operating environment can, therefore, be challenging for developers of AI and 

ML applications in healthcare.  Drawing an accurate boundary around the AI / ML system and the 

operating environment is not straightforward, and can be done in different ways.  To date, most 

developers have bounded the AI / ML system very narrowly and assumed a well-defined task or 

function in order to reduce complexity.  For example, one way of looking at an algorithm for breast 

cancer screening is to consider only a set of mammograms as input and the likelihood of malignancy 

as the output.  However, this approach runs into difficulties quickly when the wider use context needs 

to be considered, for example when an algorithm trained on data from a specific population or health 

system (e.g. patients in the NHS in the UK) is deployed in another population or health system (e.g. 

patients in the US).  Performance figures tend to drop quickly in these situations.   

Another option is to define the operating environment as the clinical system within which the AI / ML 

will be used.  This perspective recognises that the AI / ML interacts with other technology and with 

people.  Care is generally delivered by teams of healthcare professionals working as clinical teams, 

and supported by a large number of tools and technologies.  AI and ML systems, even with increasing 

autonomy, might be best understood as part of such clinical teams.   

A useful approach to model clinical systems at the functional level is the Functional Resonance Analysis 

Method (FRAM).  FRAM decomposes the clinical system into functions, to move away from “what a 

system is” to “what it does”. Each function is examined for its potential performance variability, then 

interactions between functions are examined. “Functional resonance” is used to describe how 

outcomes can “emerge” from everyday variability of many functions, to move away from simple 

notions of “cause and effect”. FRAM is built on four principles: 



• The principle of equivalence of success and failure – Success and failure come from the same 

source, i.e. they are not fundamentally different in nature. Approximate adjustments mean 

that people adapt successful most of the time but sometimes variability in performance will 

lead to unsatisfactory outcomes. 

• The principle of approximate adjustments – Due to limitations in resource, uncertainties, 

underspecified systems and variance demands people will adjust to suit the situation. This 

gives rise to performance variability which is inevitable, ubiquitous and necessary. 

• The principle of emergence – Complex systems with many links and fluctuating approximate 

adjustments become intractable as it is impossible to predict what will happen precisely 

beyond expecting regular events. 

• The principle of functional resonance – Functions represent the different things a system 

does. Due to approximate adjustments these will exhibit performance variability. Functional 

resonance refers to how functions may impact each other’s performance variability. Small 

changes could lead to disproportionally large effects and vice versa.    

The strength of FRAM is that it supports the analyst or system designer in reasoning about 

interactions.  For example, when introducing an autonomous infusion pump into the intensive care 

unit, FRAM encourages consideration of not just the algorithmic performance (e.g. whether the 

infusion pump can control a patient’s blood sugar levels by giving insulin), but also of how the 

autonomous infusion pump communicates with nurses and doctors as well as other systems, such as 

the electronic patient record.  This provides a more realistic representation of the complexity of the 

operational environment in healthcare settings.                



APPENDIX 3 – DEFINING OPERATING SCENARIOS (BOK 1.1.3) 
The designers of artificial intelligence (AI) and machine learning (ML) applications need to scope, 

bound and articulate clearly the situations for which the application is going to be used, and how it is 

going to be used.  In the case of clinical settings, it is very likely that even autonomous systems will 

have a significant degree of interaction with people.  For example, an autonomous infusion pump will 

require interaction with the nurse in case of unexpected patient deterioration.   

It is important that the definition of operating scenarios is done based on operational realities (work-

as-done) rather than through an abstract view of what should be done in principle (work-as-imagined).  

Typically, a range of situations needs to be considered, such as routine operational scenarios, 

exceptional or emergency response scenarios, and maintenance and inspection scenarios.  

Understanding of the operational scenario includes consideration of what specifically needs to be 

done by the application and by any users, in what kind of order different activities need to be done, 

what kinds of information are required to complete an activity, what forms of interactions and 

communication take place, and what other activities people interacting with the application might be 

engaged with at the same time.   

Definition of operating scenarios can make use of analysis techniques for understanding and 

representing clinical work.  Examples include Hierarchical Task Analysis (HTA) and Functional 

Resonance Analysis (FRAM).   

HTA represents human activities based on a theory of goal-directed behaviour, and includes a 

hierarchy of goals and sub-goals linked by plans, which describe how sub-goals combine to achieve 

the higher-level goal.  Plans can be used to express any kind of algorithm, e.g. simple sequential 

ordering (such as do step 1 to step 3 in order), free ordering (do steps 1, 2, 3 in any order), as well as 

more complex loops (such as do step 1 and step 2 in order until signal A is active, then do step 3).  This 

representation creates a tree-like structure, where the leaves represent task steps that are considered 

elementary (e.g. basic manual operations) or where further decomposition is not considered 

necessary.   

FRAM decomposes the clinical system into functions, to move away from “what a system is” to “what 

it does”. Each function is examined for its potential performance variability, then interactions between 

functions are examined. “Functional resonance” is used to describe how outcomes can “emerge” from 

everyday variability of many functions, to move away from simple notions of “cause and effect”. 



APPENDIX 4 – IDENTIFYING HAZARDOUS SYSTEM BEHAVIOUR (BOK

1.2) 
One of the main mechanisms for identifying hazards and error prone conditions are the methods used 

to help identify hazardous system behaviour. Methods shape thinking and dialogues, and influence 

what can be “seen” in the context before the RAS intervention and what may happen when the RAS 

intervention is deployed. Methods will influence requisite variety, i.e. the ability to foresee issues that 

may arise in future systems that do and do not yet exist.  

Understanding the coverage, strengths and weaknesses of a method is important for its determining 

its adequacy for identifying hazardous system behaviour. However, it is impossible to run method 

comparison studies that do not suffer from confounding variables. For example, there is always the 

“evaluator effect”, and even if you keep the same evaluator then they learn over successive 

applications of different methods to the same area, which means that the study is then confounded. 

Furthermore, where some methods engage with stakeholders and subject matter experts (SMEs) then 

their contributions does not necessarily have to be aligned with the method, serendipity may help 

discover insights. Accepting these limitations, we may still compare the foundational theory, concepts 

and representations that are tied up in the use of methods, which has consequences for 

understanding system safety. 

1) Functional Resonance Analysis Method (FRAM) 

FRAM focuses on the performance variability of system functions, so what it does rather than its actual 

parts and composition. It has Safety-II foundations and so should be more aligned with how everyday 

safety is created the majority of the time, rather than trying to identify low frequency - high 

consequence events. It views deviations, goal conflicts and inherent trade-offs as necessary and 

normal. It tries to build a better understanding of work-as-done, not how work can fail. 

From this perspective an exemplar FRAM issue would be why a written prescription is rarely complete 

despite official guidance that says it should be. This issue is not written off as an error or non-

compliance issue, but represents an opportunity for learning: to understand how this variability 

depends on the type drug, the experience of the doctor and the nurse, the context, time pressure, 

etc. and why this adaptive behaviour happens for good reason.  



2) Systematic Human Error Reduction and Prediction Approach (SHERPA) 

SHERPA focuses on a detailed task analysis, human failure analysis and Performance Influencing 

Factors (PIF) analysis to understand what is driving human failure risks. This is very error orientated. 

However, consensus groups of subject matter experts (SMEs) are an explicit part of the method, so 

the task analysis is grounded in frontline worker experience while being informed by management 

and safety engineers. So, going beyond error management, this technique also looks at optimising 

system design and developing best practice. This method has cognitive science and task analysis as its 

foundation.  

From this perspective an exemplar SHERPA issue would be something like “right action on wrong 

object”, e.g. a label printed and placed on the wrong syringe. The method would then inspect the PIFs 

that influence this and seek to design the situation to eliminate these risks or make them less likely. 

Non-compliance would also be of interest, but more to understand the PIFs from the frontline that 

influence this rather than bluntly trying to reinforce the rules. Something more out of scope of SHERPA 

would be technical issues like the autonomous infusion pump fails to communicate with the health IT 

system because the network is down, or updates to health IT software meaning current request for 

authority to operate outside of clinical guidelines (extended autonomy) is cancelled.  

3) Safety Modelling, Assurance and Reporting Toolset (SMART)  

SMART focuses on identifying hazards and their prevention barriers and mitigation barriers using the 

bowtie method. This looks at the number and quality of barriers to prevent the hazard and stop the 

ultimate outcome we are trying to avoid. Barriers can have degradation factors and controls. SMART 

also uses process diagrams to build up picture of the task as this is not captured in bowtie analyses. 

The main hazards and barriers can be identified without going into the details of a fine-grained task 

analysis. This type of analysis should be familiar to safety engineers and can be quite technical. 

From this perspective an exemplar SMART issue would be something like the autonomous infusion 

pump wrongly assumes it has authority to operate outside of clinical guidelines when in fact no 

authority has been granted. Typically, SMART is less likely to engage with the more intricate issues to 

do with trade-offs identified in FRAM and the psychological details that SHERPA engages with. 

The choice of method will impact the understanding of system safety, which will in turn impact design 

and safety management. 



APPENDIX 5 – CONSIDERING HUMAN-MACHINE INTERACTION (BOK

1.2.1) 
Artificial intelligence (AI) and machine learning (ML) applications in healthcare are often evaluated on 

narrowly defined tasks.  However, the real challenges for the adoption of AI and ML will arise when 

algorithms are integrated into clinical systems to deliver a service in collaboration with clinicians as 

well as other technology.  It is at this clinical system level, where teams consisting of healthcare 

professionals and AI systems cooperate and collaborate to provide a service, that human factors 

challenges will come to the fore.   

When automation started to be deployed at scale in industrial systems, human factors research on 

“automation surprises” and the “ironies of automation” explained some of the problems that 

appeared with the introduction of automation.  The fundamental fallacy is the assumption that 

automation might replace people, but in actual reality the use of automation changes and transforms 

what people do.  Clinical systems are not necessarily comparable to commercial aircraft or 

autonomous vehicles.  However, a look across these different industries can be useful to highlight 

potential human factors challenges that are likely to require consideration when adopting AI and ML 

in patient care.  Such human factors challenges relate to cognitive aspects (automation bias and 

human performance), handover and communication between clinicians and AI systems, situation 

awareness and the impact on the interaction with patients.   

The table provides an illustration of human factors issues that might require consideration in the 

example of the design of an autonomous infusion pump to be deployed in the intensive care setting.   

HF Challenge Description Example 

Handover The autonomous system needs to 

be able to recognise its own 

performance boundaries, project 

into the future clinical scenarios 

that will be beyond its performance 

boundaries, and identify suitable 

ways to hand over control to the 

clinician.   Handover includes 

consideration of: (a) when to hand 

over; (b) whom to hand over to; (c) 

The patient’s blood sugar levels do not 

respond sufficiently to the insulin given by 

the autonomous infusion pump.  The pump 

predicts and recognises that it will not be 

able to control the patient’s blood sugar.  

The pump triggers an alert on the electronic 

health record, raises an audible alarm, and 

requests the nurse to take over.  The nurse 

can review the reason for the alert, the 

history of the pump’s insulin management, 



what to hand over; and (d) how to 

hand over.   

and its projection into the future, and act 

accordingly.     

Performance 

Variability 

Clinicians need to manage 

competing organisational priorities 

and operational demands.  They use 

their experience and judgement to 

make trade-offs based on the 

requirements of a specific situation.  

The autonomous system needs to 

support rather than constrain this 

performance variability and 

adaptive capacity.   

The nurse realises that insulin has not yet 

been prescribed for the patient even 

though they will likely need it.  The nurse 

goes and finds the doctor, explains the 

situation, and the doctor issues a verbal 

medication order and will follow this up 

with the written prescription later 

(performance variability).  The autonomous 

system requires an electronic medication 

order, but allows for a manual override.  The 

autonomous system sends reminders to the 

doctor with a request for completing the 

electronic medication order.   

Automation bias When a system works well most of 

the time, clinicians start to rely on 

it.  In some situations, this can lead 

to overreliance, for example when 

the system takes an inappropriate 

action but the clinician does not 

recognise this because they trust 

the system.   

Due to sepsis the patient requires tighter 

control of blood sugar levels than usual.  

The autonomous system has managed 

successfully septic patients before but, in 

this instance, fails to recognise the need for 

tighter glycaemic control.  The autonomous 

system provides clinician interpretable 

justification and explanation of its 

decisions, and the clinician, who has 

received training on potentially 

inappropriate behaviours of the 

autonomous system, is able to spot the 

discrepancy and act accordingly.   

Supervision Clinicians are both users and 

supervisors of the autonomous 

system.  They need to understand 

not only how to operate the 

autonomous system (e.g. loading a 

The autonomous infusion pump is 

operating on the sliding scale algorithm for 

administering insulin.  It classifies the 

patient’s response to the current insulin 

infusion as requiring transition to another 



syringe), but also how to recognise 

potential failure modes or 

deviations from appropriate 

behaviour or changes in the 

environment that might move the 

autonomous system outside of its 

design envelope.   

scale with 70%, as opposed to 30% for 

staying within the current scale.  The 

autonomous system initiates and the 

transition, and activates an “uncertainty 

marker” to alert the clinician.   



APPENDIX 6 – VALIDATION OF SAFETY REQUIREMENTS (BOK 1.3.1) 
The introduction of artificial intelligence (AI) and machine learning (ML) applications into clinical 

systems can create challenges for traditional design approaches that require clearly defined and 

precise specifications of the operating environment, operational scenarios and of the resulting safety 

requirements that bound the behaviour of the AI / ML system.  Healthcare is a complex domain, and 

clinical systems are made up of many different actors and technologies all interacting with one 

another in ways that can be very dynamic and responsive to the requirements of a specific situation. 

One way of both eliciting and validating safety requirements (though not the only one, nor even a 

standalone approach) is to seek input and feedback from stakeholders, e.g. through simulation or 

interviews.  This approach is particularly appropriate where human – machine interaction and training 

are concerned.   

For example, in the case of the design of an autonomous infusion pump to be used in intensive care, 

input from stakeholders might produce training requirements as shown below.  Feedback from 

stakeholders on a design prototype can then provide information about the extent to which the 

requirements have been met.   

Clinicians need to maintain 

core clinical skills 

When an autonomous system fails or becomes unavailable, 

staff need to remain vigilant and be able to take over.  They 

require training and exposure to maintain their clinical skills.     

Clinicians need to build a 

baseline understanding of 

AI and its limitations 

Clinicians will become users as well as supervisors of AI 

systems.  They shall be provided with a baseline understanding 

of how AI works so that they are able to identify limitations and 

problems.       

Training needs to address 

over-reliance on AI 

Staff might rely too much on AI.  They shall receive training in 

core clinical skills and education about limitations of AI to help 

address over-reliance.   

Similarly, high level safety requirements relating to autonomy and control might be validated through 

feedback on a proposed interaction design.   



Clinicians need to be able 

to maintain autonomy. 

Clinicians feel responsible for their patient and want to remain 

in control.  Autonomous systems can challenge this sense of 

autonomy, and clinicians need to be allowed to remain in 

charge, e.g. through manual override options.     

Feedback and alerts shall 

provide clinicians with an 

awareness of what the AI is 

doing  

Feedback and alerts can help to maintain situation awareness 

and stay in control of the overall treatment and care for the 

patient.  The design shall determine clearly when an alert is 

raised.  The system shall avoid alert fatigue or overload.       

Clinicians need to be able 

to build trust in AI 

Clinicians have to trust AI in order to realise its benefits.  The 

interaction design shall include training and feedback.  The AI 

system shall be introduced gradually in low-risk areas over 

time.     



APPENDIX 7 – DEFINING SAFE SYSTEM RESPONSES TO CHANGES (BOK

2.6) 
Healthcare is delivered in a highly dynamic and non-deterministic environment, and successful 

outcomes are dependent on actions and decisions made by humans.  However, humans are fallible 

and unintentional errors and mistakes have led to unsafe care outcomes.   Application of artificial 

intelligence (AI) offers great potential in this domain by: automating routine tasks that are susceptible 

to human error e.g. transcribing prescriptions and printing syringe labels; and working autonomously 

to monitor and manage care scenarios e.g. optimising insulin infusion regime.  

However, by removing the HCP from the real-time, closed loop, care pathway there is a significant risk 

that they will lose their situational awareness and their ability to deliver effective care could be 

compromised.  So, whilst there is a great opportunity to improve efficiency within healthcare, careful 

consideration needs to be given to monitoring and handover protocols such that effective human 

intervention occurs should the AI’s behaviour exhibit characteristics that could cause or contribute to 

patient harm. 

The following guidelines provide a framework which will support effective monitoring and handover 

between AI technology and HCPs 

Upskill HCPs HCPs will need to establish an understanding of the technology, 

its capabilities and weaknesses so they are better placed to 

recognise anomalous behaviour. 

Baseline and understand 

care pathway  

Care pathways need to be defined and baselined (representing 

work as is done) so that the contribution and authority of AI is 

clearly expressed and understood within the clinical team.       

Define AI capability The specific capability that the AI is providing needs to be 

defined and characterised in the context of supporting the care 

pathway. 

This must consider the interaction between the AI and the HCP 

both as a user and also a supervisor. 



This must consider the authority limits autonomous AI can 

have. 

This must consider the monitoring and alerting mechanisms 

and whether these are undertaken by the AI itself or 

independently by another element of the care system.  

Conduct pre-emptive 

hazard analysis 

Need to understand the potential patient-level harm effects 

that could occur in the care-pathway and the specific 

contributions AI could make.   The severity of harm outcome 

and the significance of the AI contribution will impact the 

definition of the following key activities. 

Develop monitoring SOP Need to develop a regime within the care-pathway which will 

ensure the continued safe operation of the AI.  This will be 

dictated by the capability that the AI is providing (automation 

and/or autonomy) but typically would need to consider: 

Pro-active or re-active: HCP routinely monitors behaviour of AI 

or responds to an alert or alarm. 

Frequency: sufficient to maintain situational awareness but not 

so frequent that it compromises efficiency 

Trends: does the monitoring indicate progression to a unsafe 

state or imminent point of handover. 

Escalation: is there a need for a monitoring HCP to seek second 

opinion or high authority before initiating any action 

Monitoring architecture: this needs to be defined and 

consideration given to whether the AI simply monitors itself, 

whether the AI is monitored independently by another element 

of the care system or whether it’s a combination of both. 



Develop hand-over SOP Need to develop a regime within the care pathway, which will 

ensure timely HCP intervention when required.  This will be 

dictated by the capability that the AI is providing (automation 

and/or autonomy) but typically would need to consider: 

Definition of safe limits: the limit of authority the AI can have 

before HCP intervention is required needs to be defined.  

Definition should consider the need for soft limits i.e. those 

that can be transgressed but signify an impending handover 

requirement.   Hard limits i.e. those that must never be 

exceeded need to be defined.  The protocol needs to consider 

the degree of authority the AI has; does it have the same as a 

HCP or is it restricted to a lower level.  

Definition of transfer state: the AI’s behaviour whilst a 

handover is being determined needs to be specified.  Does the 

AI continue to perform its function which may result in a 

change in outcome, does it maintain a steady state of output 

or default to previous know good (safe) output.  The period of 

time that the transfer state can persist needs to be defined. 

Definition of safe state:  the AI’s behaviour once authority has 

been relinquished needs to be defined.  Does the AI revert to a 

“off” state and dissociate itself from the care pathway or does 

it continue to function in “hot standby” in order to support a 

subsequent transfer of authority back from the HCP. 

Definition of re-engagement criteria: the criteria and process 

for re-engagement of the AI needs to be defined. 

Definition of audit log: an audit log may be needed to support 

informed and safe handover of authority to a HCP.  It will be 

necessary to identify those clinical variables, environmental 

conditions and system parameters that influenced the learning.  

The HCP will need to be able to quickly assimilate the clinical 

scenario and take effective mitigating action.  



Simulation and dry-runs Need to train HCPs in execution of the SOPs potentially through 

simulation (outside of the care environment) and dry-runs 

(inside the care environment) of hazard scenarios.  This needs 

to verify the effectiveness of the SOP and the ability of the 

organisation to follow it in real-life scenarios. 

Re-active incident 

management 

There is a need for an organisation to recognise when handover 

between the AI and HCPs has resulted in an incident or near-

miss.  This needs to be accommodated in the organisation’s 

existing service / safety management process.  Such events 

need to be reviewed and the impact on the organisation’s 

safety case and understanding of AI technology considered. 




